

Daniel Jacob, Michaël Maucourt, Léa Roch, Catherine Deborde

Guideline Overview

NMRProcFlow Targeted Metabolomics

Quantitative approach wherein a set of known metabolites are quantitated.

The identified metabolite peaks are then quantified based on internal or external reference compounds.

Explanation are based on a study realized within the Eranet EraSysBio+ FRIM project (2010-2013) (See http://nmrprocflow.org/ex1 for more details)

qHNMR Template

Integration

STEP 2

SCIENCE & IMPACT

Samples	Buck	kets d	ata_NI	MRFRIM3-4	snr_NMR	FRIM3-4	data_GlucGlr	n data_Fr	ruGlu Qu	antif					S	STEP 2
D	ata r	matrix	(Integra	tion
Samr	olecode	Condition	Stage	B0 9509	B1_0206	B1 0442	B1 4839	B1 5269	B1 6215	B1 7200	B1 8600	B2 2965	B2 3430			
F3-0	01	Control	J08	1.197219917	0.11920527	0.2117872	0.359632854	0.157167137	0.05015902	0.160503996	0.177534661	0.853829515	0.072569616			
F3-04	49	Control	J08	0.924675782	0.057859812	0.111029016	0.280858892	0.103663735	0.084892166	0.112526937	0.189986646	0.544297043	0.04475733			
F3-0	97	Control	J08	1.189932036	0.079790696	0.140904923	0.362965256	0.157745771	0.100240783	0.146035722	0.215697044	0.640511817	0.04992885	(
F3-0	02	Shadow	30L	1.562665595	0.191439372	0.319040281	0.502781217	0.257744716	0.06091033	0.18611254	0.173671735	1.096977261	0.112541814	Integra	al	(ua)
F3-0	50	Shadow	J08	1.049527262	0.056337073	0.114026268	0.309080287	0.123141416	0.151588195	0.151560436	0.212124384	0.776167973	0.053883556		Bucket	(0.0.)
F3-0	98	Shadow	J08	1.2147108	0.069079124	0.146232894	0.412259683	0.143342919	0.173638568	0.192866244	0.231771975	0.831622487	0.026965075			
F3-0	13	Control	J15	1.230249243	0.150036456	0.220160476	0.365036244	0.179500156	0.018069171	0.109019589	0.120879878	0.67602002	0.118853645			
F3-0	61	Control	J15	1.315441699	0.163266044	0.236011184	0.516234488	0.283632725	0.014287287	0.135501366	0.076636391	0.51641915	0.054868788			
F3-1	09	Control	J15	1.455521949	0.177726307	0.273326662	0.783008806	0.414775131	0.024724258	0.139867876	0.091691053	0.60308891	0.074583399			
F3-0	62	Shadow	J15	1.199053209	0.148293862	0.216013646	0.397807574	0.243109345	0.018661245	0.084687269	0.092568151	0.605795009	0.062439579			
F3-1	10	Shadow	J15	1.238750361	0.133912552	0.207718047	0.436287704	0.239369047	0.031758704	0.142027392	0.115287408	0.69709523	0.108704623			
F3-0	25	Control	J28	0.997455155	0.154826918	0.24263087	0.417426987	0.221219606	0.012098044	0.097915988	0.047040385	0.63545924	0.06822784			
F3-0	73	Control	J28	1.210740956	0.185499293	0.285459491	0.419312993	0.207293477	0.024365789	0.122052583	0.043059982	0.84013724	0.084969811			
F3-1	21	Control	J28	1.416305079	0.233637849	0.331938863	0.430187547	0.200749872	0.030308306	0.13910798	0.027728982	1.127111323	0.099325543			
F3-0	26	Shadow	J28	1.061406682	0.181095714	0.286524633	0.511107219	0.226427303	0.013570912	0.119122818	0.043617397	1.294068891	0.319238688			
F3-0	74	Shadow	J28	1.524294254	0.250545419	0.404725006	0.676973622	0.327245516	0.021121932	0.170971458	0.043242006	0.882162649	0.077625512			
F3-1	22	Shadow	J28	1.388375062	0.208906639	0.301672852	0.444083463	0.212689173	0.025305086	0.133998658	0.046486906	1.068754647	0.101913921			
F3-0	85	Control	J55	1.483960462	0.154978219	0.178640806	0.269190406	0.086650538	0.023053824	0.236587427	0.057584323	1.049641099	0.97844667			
F3-1	33	Control	J55	1.43946186	0.156429634	0.149701721	0.737277535	0.25565374	0.053685673	0.216276457	0.044655033	0.927770076	0.840996125			
F3-0	38	Shadow	J55	1.740518112	0.184446031	0.204858909	1.292949511	0.40383945	0.017978665	0.27569556	0.060306864	0.965029952	1.033831262			
F3-0	86	Shadow	J55	1.63868709	0.160552595	0.12031416	0.373019116	0.117474094	0.029256057	0.262435486	0.05720183	1.00943081	1.330530755			
F3-1	34	Shadow	J55	1.86712884	0.200782078	0.179166512	1.169079619	0.370861878	0.026325021	0.251152082	0.055598126	0.955928493	1.255492902			
F4-0	01	Control	J08	1.258949103	0.105888885	0.218840237	0.552921194	0.205770356	0.094566156	0.178853911	0.257511222	1.205245553	0.089714285			
F4-0	09	Control	J08	0.806972389	0.03863403	0.099737387	0.263456623	0.099210454	0.142600631	0.096893676	0.26286479	0.719801612	0.057925787			
F4-0	65	Control	J08	1.262186477	0.078409287	0.175992037	0.478757145	0.183774169	0.117063485	0.180691929	0.267104586	0.796154097	0.054224632			
F4-0	05	Shadow	J08	1.08534168	0.072174999	0.169283749	0.327528727	0.131503341	0.144502762	0.180461883	0.291821724	1.413014357	0.100654376			
F4-0	69	Shadow	J08	1.022104358	0.05955417	0.147699021	0.431154636	0.140921917	0.110114805	0.128927617	0.290329317	0.865085583	0.04718058			

Review Reference and normalization methods: Essential tools for the intercomparison of NMR spectra

Patrick Giraudeau, Illa Tea, Gérald S. Remaud, Serge Akoka ▲ · ■ EBSI Team, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, LUNAM Université, B.P. 92208, 2 rue de la Houssinière, F-44322 Nantes Cedex 03, France Journal of Pharmaceutical and Biomedical Analysis Volume 93, May 2014, Pages 3–16

NMR Spectroscopy in Pharmaceutical and Biomedical Analysis

INRA UMR 1332 BFP, Metabolomics Facility – 10 JS RFMS– May 2016

Quantification

Rawnames	Samplecode	expno pro	cno Conditio	n Stage	Volun	ne (10^-6.L)	mgDW	Dilution	JIEP J
MMBBI_15P07-F3-001	F3-001	1	1 Contro	80L I		505	20.5	1	
MMBBI_15P07-F3-049	F3-049	1	1 Contro	80L I		505	20	1	
MBBI_15P07-F3-097	F3-097	1	1 Contro	80L I		505	19.8	1	
/MBBI_15P07-F3-002	F3-002	1	1 Shadov	/ J08		510	20.2	1	
1MBBI_15P07-F3-050	F3-050	1	1 Shadov	/ J08		510	20	1	
IMBBI_15P07-F3-098	F3-098	1	1 Shadov	/ J08		510	20.3	1	
IMBBI_15P07-F3-013	F3-013	1	1 Contro	l J15		510	20.3		
IMBBI_15P07-F3-061	F3-061	1	1 Contro	l J15		510	19.7	_	
MBBI_15P07-F3-109	F3-109	1	1 Contro	l J15		510	19.9	1	
MBBI_15P07-F3-062	F3-062	1	1 Shadov	/ J15		510	19.8	1	
MBBI_15P07-F3-110	F3-110	1	1 Shadov	/ J15		510	20	1	
MBBI_15P07-F3-025	F3-025	1	1 Contro	J28		510	19.6	1	((μL)
MBBI_15P07-F3-073	F3-073	1	1 Contro	J28		510	20.1	1	Volume V D
MBBI_15P07-F3-121	F3-121	1	1 Contro	I J28		510	19.6	1	volume * Rate
MBBI_15P07-F3-026	F3-026	1	1 Shadov	/ J28		510	19.9	1	
IMBBI_15P07-F3-074	F3-074	1	1 Shadov	/ J28		510	20	1	
MBBI_15P07-F3-122	F3-122	1	1 Shadov	/ J28		510	19.9	1	MasseSampleDW
MBBI_15P07-F3-085	F3-085	1	1 Contro	l J55		510	20.4	1	tube
MBBI_15P07-F3-133	F3-133	1	1 Contro	l J55		510	19.9	1	(mg)
MBBI_15P07-F3-038	F3-038	1	1 Shadov	/ J55		510	19.7	1	
MBBI_15P07-F3-086	F3-086	1	1 Shadov	/ J55		510	19.9	1	
MBBI_15P07-F3-134	F3-134	1	1 Shadov	/ J55		510	19.9	1	
MBBI_15P07-F4-001	F4-001	1	1 Contro	80L I		510	20.5	1	
MBBI_15P07-F4-009	F4-009	1	1 Contro	80L I		510	20.3	1	
MBBI_15P07-F4-065	F4-065	1	1 Contro	80L I		510	20.1	1	
MBBI_15P07-F4-005	F4-005	1	1 Shadov	/ J08		510	20	1	
MBBI_15P07-F4-069	F4-069	1	1 Shadov	/ J08		510	20.5	1	
MBBI_15P07-F4-037	F4-037	1	1 Shadov	/ J08		510	19.7	1	
MBBI_15P07-F4-017	F4-017	1	1 Shadov	/ J15		505	20	1	
MBBI_15P07-F4-045	F4-045	1	1 Shadov	/ J15		505	20.1	1	
MBBI_15P07-F4-021	F4-021	1	1 Contro	I J28		505	20.3	1	~
MRRI 15007-F/-0/9	F/1-0/19	1	1 Contro	1 128		505	20.4	1	

Sample	s Bucket	data_	NMRFRIM3	8-4 snr_	NMRFRIM3-4 da	ata_GlucGln	data_FruGlu	Quantif				-
name	center	min	max	width	Compound	Number of H	Signal Proportion	Molar Mass	Calibration Factor			STEP 3b
B0_9509	0.9509	0.9212	0.9806	0.0594	isoleucine + leuci	ne 1	1	100	0.9657			
B1_0206	1.02055	1.0148	1.0263	0.0115	isoleucine	3	0.5	180.6	0.9657			
B1_0442	1.04425	1.0304	1.0581	0.0277	valine	3	1	117.15	0.9657			
B1_4839	1.4839	1.4708	1.497	0.0262	alanine	3	1	89.09	0.9657			
B1_5269	1.52685	1.5114	1.5423	0.0309	unkm1.53	1	1	100	0.9657			
B1_6215	1.6215	1.607	1.636	0.029	unkm1.62	1	1	100	0.9657			
B1_7200	1.72	1.7	1.74	0.04	lysine	2	0.684	146.1876				
B1_8600	1.86	1.845	1.875	0.03	quinate	1	0.72	192.1666	0.9657			
B2_2965	2.2965	2.285	2.308	0.023	GABA	2	0.746	103.12	0.9657			
B2_3430	2.343	2.338	2.348	0.01	glutamate	1	1	147.13	0.4831			
B2_4450	2.445	2.433	2.457	0.024	glutamine	1	1	146.1	0.9168			
B2_5720	2.572	2.547	2.597	0.05	citrate	2	1			(ua) 🕨		
B2_7995	2.7995	2.791	2.808	0.017	aspartate	2	0.315		l.a			
B2_8925	2.8925	2.88	2.905	0.025	asparagine	2	0.297		In	tegra		
B3_2066	3.20655	3.2021	3.211	0.0089	choline	9	1			BUCKEL	X MM	x 10^{-3}
B3_6060	3.606	3.603	3.609	0.006	inositol	2	0.308	Cali	h		cmpd	
B4_1155	4.1155	4.105	4.126	0.021	fructose	1	1	Cdll	D _{Ref} X	N _{1H} X % Signal		-
B4_1645	4.1645	4.16	4.169	0.009	pyroglutamate	1	0.251				(g/molo)	
B4_3025	4.3025	4.284	4.321	0.037	malate	1	1	lus	m M	1	(g / mole)	
B4_6508	4.6508	4.6272	4.6744	0.0472	glucose_C1_beta	1	1	Juc	a .IIIIVI)		
B5_1040	5.104	5.096	5.112	0.016	Unkm5.10	1	1			γ		
B5_1870	5.187	5.182	5.192	0.01	mannose	1	1		n	nМ		
B5_2385	5.2385	5.229	5.248	0.019	glucose_C1_alph	a 1	1	\		tube)
B5_2710	5.271	5.264	5.278	0.014	galactose	1	0.634					
B5_3085	5.3085	5.3	5.317	0.017	galacturonate	1	1	154.14	0.9037			
B5_3925	5.3925	5.387	5.398	0.011	unk\$5.39	1	1	100	0.9657			
B5_4175	5.4175	5.408	5.427	0.019	saccharose	1	1	342.3	0.9657			
B5_8275	5.8275	5.817	5.838	0.021	unkM5.83	1	1	100	0.9657			
B6_1525	6.1525	6.14	6.165	0.025	adenosine_like	1	1	267.24	0.9657			
B6_4235	6.4235	6.399	6.448	0.049	chlorogenate	1	0.5	354.3	0.9657			

SCIENCE & IMPACT

STEP 3b Calib Ref

Correction factor *due to the fact that only the central part is integrated.*

		(μL)		(u	ia)			Quantification
		Volume _{tube} X Ra	te _{dilution} x	Integ	ral Bucket	mal X MM	npd X 10 ⁻³	
		(mg)	(ua	.mM		(g / mo	ole)	
			L	mM	tube	aspartate	asparagine	(mg / gDW)
				Sig	Number of H nal Proportion Molar Mass	2 0.315 133.1	2 0.297 132.1	
				Cali	ibration Factor	0.9657	0.9657	
Samplecode	Condition	Stage	Volume (104-6 L)	mgDW	Dilution	mg/gDW	mg/gDW	
F3-001	Control	J08	505	20.5	1	0.661364516	0.212810673	
F3-049	Control	J08	505	20	1	0.72066603	0.242929712	
F3-097	Control	80L	505	19.8	1	0.443156239	0.2683103	
F3-002	Shadow	80L	510	20.2	1	0.589172929	0.304296199	
F3-050	Shadow	J08	510	20	1	0.514406795	0.271083658	
F3-098	Shadow	J08	510	20.3	1	0.586196427	0.216657164	
F3-013	Control	J15	510	20.3	1	0.329863411	0.225329721	
F3-061	Control	J15	510	19.7	1	0.589920237	0.532354354	
F3-109	Control	J15	510	19.9	1	0.420560526	0.205775089	
F3-062	Shadow	J15	510	19.8	1	0.42726105	0.266898284	
Samples	Buckets	data_NMRFRIM3-4 snr_N	NMRFRIM3-4 data_G	lucGln da	ata_FruGlu	Quantif		

Summary

STEP 3

Ouantification 30 9509 0.9509 0.9212 0.9806 0.0594 0.965 100 B1 0206 1.02055 1.0148 1.0263 0.0115 180.6 0.9657 **qHNMR** Template MMBBI 15P07-F3-001 Control 20.5 117 15 1 04425 1 0304 1 0581 0.9657 B1 0442 0.0277 1 MMPRI 15007-52-049 2.049 Control 109 505 20 B1 4839 1,4839 1,4708 1,497 0.0262 3 89.09 0.9657 MMBBI 15007-62-097 2-097 1 Control 108 505 19.8 B1 5269 1.52685 1.5114 1.5423 0.0309 100 0.9657 MMBBI 15007-E3-002 E3-002 1 1 Shadow 108 510 20.2 B1_6215 1.6215 1.607 1.636 100 0.9657 0.029 MMBBI 15P07-E3-050 3-050 1 1 Shadow 108 510 20 B1 7200 1.72 1.7 1.74 0.04 0.684 146.1876 0.9657 MMBBI 15P07-E3-098 890. 1 Shadow J08 510 20.3 B1 8600 1.86 1.845 0.72 192,1666 0.9657 MMBBI 15P07-F3-013 510 20.3 Jumber of B2 2965 2 2965 2 285 103 12 0.9657 0 746 MMBBI 15P07-E3-061 510 19.7 0.5 Samples Buckets Signal Proprotio 1 0.684 2 343 2 338 B2 3430 147 13 0.4831 MMBBI 15P07-E3-109 510 19.9 180.6 Molar Ma 100 117.15 89.09 100 100 146.1876 B2 4450 2 4 4 5 2 4 2 2 146.1 0.9169 19.8 MMBBI 15P07-F3-062 510 0.9657 0.9657 0.9657 0.9657 0.9657 0.9657 B2_5720 2.572 2.547 192.1 0.9657 Calibratio 0.9657 MMBBI 15P07-F3-110 510 20 B2 7995 2.7995 2.791 2.808 0.01 2 0.608 133.1 0.9657 MMBBI 15P07-F3-025 -025 Control J28 510 19.6 B1 621 MMBBI 15P07-F3-073 510 B2 8925 2,8925 2,88 2,905 0.025 2 0.318 132.1 0.9657 Control 128 20.1 E3-001 Control 108 3 000122242 0.089913927 0 207245812 0 267628328 0 393846291 0 125693858 0 201088628 3.20655 3.2021 3.211 0.0089 104.17 0.9657 MMBBI 15P07-F3-121 3-121 Control 510 19.6 B3 2066 128 F3-049 Control 308 2.386656197 0.04495147 0.111907169 0.21527632 0.267563723 0.219112925 0.145208995 MMBBI 15P07-F3-026 510 19.9 Shadow B3 6060 3,606 3,603 3,609 0.006 0.308 180.16 0.9657 -026 128 2 E3-097 Control 108 3 1083/12/99 0.062737247 0.143732148 0 281565519 0 412063772 0 2618/91/15 0 19072273 MMBBI 15P07-F3-074 Shadow 510 3-074 128 20 B4 1155 4,1155 4,105 4,126 0.021 180.2 0.4931 F3-002 Shadow J08 4.0523762 0.149431262 0.323080141 0.387195637 0.668395437 0.157955466 0.241299257 MMBBI 15P07-F3-122 510 19.9 1 Shadow B4 1645 4.1645 4.16 4.169 0.009 0.251 129.11 0.9657 F3-050 Shadow J08 2.69776623 0 043588444 0 114455466 0.235933495 0 316529894 0.389651159 0 19477494 MMBBI 15P07-F3-085 3-085 Control 510 20.4 B4 3025 4.3025 4.284 4.321 0.037 134.1 0.9657 MMBBI_15P07-F3-133 3-13 510 19.9 F3-098 Shadow 308 3.093200824 0.052947876 0.145412365 0.311755263 0.365015636 0.442162003 0.245543301 Control B4 6508 4.6508 4.6272 4.6744 0.0472 180.2 0.9657 MMBBI 15P07-F3-038 -038 Shadow 510 19.7 115 0 22150208 B5 1040 5,104 5,096 5,112 0.016 100 0.965 E3-013 Control 3 169644246 0 116353836 0 279293678 0.462468594 0.046553853 0 1/0/2958 MMBBI 15P07-F3-086 Shadow 510 19.9 B5_1870 5.187 5.182 5.192 1810.2 0.965 F3-061 Control J15 3.478950385 0.129 012384 0.03778560 0.179166556 0.01 MMBBI 15P07-F3-134 -134 Shadov 510 19.9 B5 2385 5,2385 5,229 5,248 0.019 180.2 0.9657 F3-109 Control J15 3.849696749 0.141 uantification 034967 0.065392965 0 184953428 MMBBI 15P07-F4-001 4-00 Control 510 20.5 B5 2710 5.271 5.264 5.278 0.014 0.634 180.2 0.9657 F3-062 Shadow J15 3.158037159 0.117 295476 0.049149532 0.111515068 MMBBI 15P07-F4-009 1-00 Control 301 20.3 B5 3085 5.3085 5.3 5.317 0.017 194.14 0.9657 MMBBI_15P07-F4-065 4-06 Control 105 20.1 E2-110 Shadow J15 3.245321404 0 105 107379 0.08320256 0 186029866 B5 3925 5.3925 5.387 5.398 0.011 100 0.9657 MMBBI_15P07-F4-005 4-005 Shadow 108 20 F3-025 Control J28 2.647722674 0.123706374 0.25150476 0.329054127 0.587222557 0.03211399 0.129947931 342.3 0.9657 MMBBI_15P07-F4-069 4 069 Shadow 108 F3-073 Control J28 3.124926855 0.144111082 0.287709464 0.321391693 0 535025224 0.062888191 0 157496984 100 0.9657 MMBBI_15P07-F4-037 4 027 Shadow 108 Changes have be made ... F3-121 Control 128 3.777189092 0.187551961 0.345693374 0.340704173 0.535386223 0.080830186 0.185481501 267.24 0.9657 MMBBI_15P07-F4-017 E4-017 Shadow 115 E3-026 Shadow 128 2,734160783 0.140416098 0.288220744 0.39098667 0.583271862 0.034958377 0.153417123 354.3 0.9657 MMBBI 15P07-F4-045 4-045 Shadow 115 B6 5231 6.5231 6.5185 6.5277 F3-074 Shadow J28 3.97063954 0.196446643 0.411692284 0.523686166 0.852443013 0.055020596 0.222664975 MMBBI 15P07-F4-021 F4-021 Control 20.3 0.0092 116.1 0.9657 128 MMBBI 15P07-F4-049 4-049 1 Control 128 20.4 B6 9035 6 9035 6 886 6 921 0.035 181 19 0.9657 F3-122 Shadow J28 3.656918283 0.165625495 0.310288528 0 34736076 0.560213839 0.066652472 0.176459702 MMBBI 15P07-F4-081 F4-081 1 Control 128 20.2 B7 4290 7.429 7.415 7.443 0.028 0.632 165.19 0.9657 1 F3-085 Control J55 3.75750532 0.118117551 0.176635903 0.202415868 0.21940602 0.058374105 0.299506036 MMBBI 15P07-F4-025 F4-025 1 Shadow 128 505 20.5 B7 5585 7,5585 7,543 7,574 0.031 204.22 0.9657 1 1 1 E3-133 Control 155 3.717218627 0.12159157 0.150961351 0.565401098 0.660191751 0.138636104 0.279231129 MMBBI 15P07-F4-053 F4-053 1 Shadow J28 505 20.4 1 B7 6185 7.6185 7.604 7.633 0.029 100 0.9657 F3-038 Shadow J55 4.625790823 0.147551372 0.212609829 1.02046171 1.07328778 0.047782062 0 366331156 Samples Buckets Data SNR Quantification (\pm) Samples Buckets Data SNR Quantification \oplus F3-086 Shadow J55 4,307108567 0.12702044 0.1234888 0.291157901 0.308767719 0.076896326 0 344864895 F3-134 Shadow J55 4.902640373 0.158689134 0.183710352 0.911606774 0.973795903 0.069123302 0.329707765 F4-001 Control 108 3.163491407 0.080089459 0.214736911 0.412600194 0.517060421 0.237626146 0.224695084 F4-009 Control 308 2.050369109 0.029546761 0.09895834 0.198788016 0.252075602 0.362322097 0.123085091 F4-065 Control J08 3.27756956 0.061286158 0.178460642 0.369191223 0.477213654 0 303983383 0.234586919 F4-005 Shadow 308 2.81104918 0.056267192 0.171213604 0.251917921 0.340595377 0.374264048 0.233681369 108 F4-069 Shadow 2.596089316 0.045530567 0.146495082 0.325210945 0.357933983 0.279685597 0.163721979 (μL) (ua) F4-037 Shadow 308 2.572827053 0.04617359 0.150917812 0.243792469 0.27940151 0.381558284 0.177987022 0.05479 F4-017 Shadow J15 1.934229398 0.127283831 0.238472209 0.367643755 0.149173029 0.042191959 Volume Х Rate Integral F4-045 Shadow J15 2.600365814 0.20392849 0.570226067 0.978159139 0.073992316 0.152926884 tube dilution X Bucket **X** 10⁻³ MM Samples Buckets Data SNR Ouantifica Æ х cmpd Calib_{Ref} x Ν MasseSampleDW % Signal '1H tube (g / mole) (mg) (ua .mM ... then the 'Quantification' tab has been automatically updated mΜ tube (mg/gDW) **IFTAROHUR** INRA UMR 1332 BFP, Metabolomics Facility – 10 JS RFMS– May 2016

STEP 3

amples	Buckets	data_NMRFF	RIM3-4 sn	r_NMRFRI	M3-4	data_GlucGln	data_	FruGlu	Quant	tif								
	A A	вс	D	E	F	G	н	1	J	к	L	м	N	0	P	Q	R S	STEP
1				isoleucine+	isoleucine	valine alar	nine unkr	n1.53 un	ikm1.62 ly:	sine i	quinate (GABA g	glutamate – g	glutamine o	itrate a	aspartate as	paragine cholin	
2	Samplecode	Condition	Stage	B0_9509 I	B1_0206	B1_0442 B1_	4839 B1_9	5269 B1	_6215 B ⁻	1_7200 E	31_8600 E	32_2965 E	32_3430 E	32_4450 B	2_5720 E	32_75	Cho	
3	F3-001	Control	30L	90	68	64	112	33	8	14	54	363	36	99	4721		Cne	CK SINK
4	F3-049	Control	30L	61	28	32	83	21	14	9	59	216	19	68	4442	42	10	
5	F3-097	Control	30L	74	38	37	97	27	14	10	57	237	20	56	4097	32	11	
6	F3-002	Shadow	30L	104	93	82	129	46	8	15	45	384	47	62	3602	34	19 1	
7	F3-050	Shadow	108		33	38	103	23	24	13	66	351	23	87	5370	32	19	
8	F3-098	Shadow	30L	90	35	40	115	24	21	16	63	325	12	113	9737	42	18	
3	F3-013	Control	J15	33	01	70	10	33		12	30	203	20	140	3334	21	14	
10	F3-061	Control	J15	101	102	14	100	02	5	14	20	202	20	142	3220	34	30	
11	F3-109	Control	J15	110	103	00	243	50	5	14	23	200		02	3200	24	10	
12	F3-062	Shadow	J15	31	67	59	126	44	4	- 11	24	200	- 40	32	3463	24	17	
13	F3-110	Shadow	J15	90	95	30	143	54	3	12	11	203	40	98	3665	52	41	
14	F3-025	Control	J28	109	112	90	136	50	4	12	15	369	41	150	3638	56	44	
10	F3-073	Control	J28	111	120	93	119	42	4	15	15	414	44	139	3006	52	45	
17	F3-121	Control	J28	100	119	103	181	59	3	15	20	606	168	125	2490	31	60	
18	F3-026	Shadow	J28	133	146	123	212	77	4	19	13	363	36	184	3211	53	54	
19	F3-074	Shadow	J28	120	127	97	144	50	4	16	13	456	50	154	3348	65	69 1	
20	F3-122	Shadow	J28	117	58	31	154	39	2	19	15	225	280	258	3610	194	71	
21	F3-085	Control	J55															
22	F3-133	Control	J55	Calc	ulate	Signal t	o Nois	e Rat	tio									
23	F3-038	Shadow	J55	Care	Julate	Jightart	0 10013		lio									
24	F3-086	Shadow	J55	(sam	e as the	e Bruker To	opSpin '	sino' c	ommar	nd)								
25	F3-134	Shadow	J55	•			• •			'	14/1							
26	F4-001	Control	30L								Where	5:						
27	, F4-009	Control	80L								• mo	wwal is t	tha hiat	host into	ncity in	the spe	ctral rogio	n
28	F4-065	Control	80L				maxva	Ils.	h:)		• 1110	xvui is	the high	lest inte	insity in	i the spe	ctianegio	11
29	F4-005	Shadow	80L	SN	R(S)	$(h_{i}) = -$		''``'I'	~]/		def	ined by	the bu	cket j or	n the sp	ectrum <i>i</i>		
30	F4-069	Shadow	801			~	2 n	nicol	5.)		• •	, ico ic th	o octim	- atad nai	ico in th	o givon (spectral re	gion
31	F4-037	Shadow	108				2.110	JISE (<i>'</i> i'		- 1101		e estina	מנכט ווטו	se in th	e given s	pecualit	SION
32	F4-017	Shadow	115								for	each sc	oectrum	า <i>i</i>				
33	F4-045	Snadow	115									. 1.						
34	F4-021	Control	128															
35	F4-049	Control	128															
36	F4-081	Shadow	128															
37	E4-025	Shadow	128															
38	E4-095	Shadow	128	100	120	110	251	97	2	14	10	202	FC	107	2567	27	45	
39	E4-085	Control	120	120	138	110	251	21	2	14	19	303	200	214	3007	37	40	
40	E4-029	Control	155	140	121	42	261	66	3	24	10	303	200	214	5162	303	101	
41	E4-080	Control	155	140	121	42	201	20	7	24	14	430	400	340	5329	224	117	
42	E4-089	Shadow	122	124	88	43	125	33	4	20	11	371	205	302	5738	224	126	
43	E4-051	Shadow	155	161	112	57	289	73	5	29	15	464	355	365	6449	313	161	
44	E4-001	Shadow	155	94	60	24	114	32	3	17	8	257	329	296	6728	256	101	5
40	14-055	Shadow	222		00	27	114	02	-			201	020	200	0120	200	101	
SCIEN	CE & IMPACT			. 1	ΙΝΚΑ ί	JIVIK 1332 Β	rr, ivietai	סומיסוסמ	cs Facility	בנ טב – v	KFIVIS-	iviay 20'1	D	1	1		Q	

http://nmrprocflow.org/

